If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-142+13=0
We add all the numbers together, and all the variables
11x^2-129=0
a = 11; b = 0; c = -129;
Δ = b2-4ac
Δ = 02-4·11·(-129)
Δ = 5676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5676}=\sqrt{4*1419}=\sqrt{4}*\sqrt{1419}=2\sqrt{1419}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1419}}{2*11}=\frac{0-2\sqrt{1419}}{22} =-\frac{2\sqrt{1419}}{22} =-\frac{\sqrt{1419}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1419}}{2*11}=\frac{0+2\sqrt{1419}}{22} =\frac{2\sqrt{1419}}{22} =\frac{\sqrt{1419}}{11} $
| b²-10b+21=0 | | 1+2(5)+3x=32 | | 3s/2=13 | | 3x=-126*4/4 | | x^2-55x+600=0 | | X/5-4=x/7 | | 7/4(X+21)=4x+21 | | 3x/4=-126/4 | | 6(p-2)+7=5p | | 3^x=219 | | -64+x3=0 | | 4a^+16a+16=0 | | (6x+9)(−8x−10)=0 | | 1000x-x=9 | | √5+4x+1=4x | | x+0.3=9.1 | | 3x-8x+12=13 | | 6t^2+24t-126=0 | | 3m/5+5=5 | | 7x-3.4=4x+8 | | 12+3(2x-3)=2(5X-3)-14 | | y=30+60 | | x^2-x+0.9=0 | | 4^-9x=11 | | R(x)=150-2(3x) | | 115-x=159 | | 2x+10=612x | | 13=10x-10 | | 4+5n/6=24 | | x+8=(5x-4) | | 9x-4x-6=71 | | 9-4x-6=71 |